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STRUCTURAL MECHANICS OF DEFORMATION AND FRACTURE

The general objective of this study is the development of an approach te
mechanical design and material development which takes account of some of the
contemporary understanding of the physics of sclids. Particular attention is
given to the temperature dependence of the irreversible part of the deforma-
tion which is related to the atomic scale structure of the solid through an
energy of activation. Part of the work involves the examination of the behav-
‘ior of model materials in selected test situations. The responses of the
models are then compared with features of the behavior of real materials for

which physical rationalizations are being sought.

During the current quarter, a hammer impact problem was considered from
this point of view. The results of this study have been presented at a meet-
ing of the Society of Rheology and submitted for publication in their Trans-

actions. That presentation constitutes the body of this report.

This work augments the earlier studies of the responses of similar models
to simpler stress and strain program which are cited in the bibliography. 1In
addition to illuminating the relationships between material response and mate-
rial structure, the new results are relevant to material forming processes, lab-
oratory testing of materials and the design of devices for the attenuation of

impact loads.

The material in this report is part of a proposed thesis to be submitted to
Prof. W. F. Ames of the University of Delaware in connection with the candidacy

of Mr. Mueller for the Ph. D. degree.



ABSTRACT

As part of a continuing exploration of the mechanical
behavior of materials which have temperature dependent pro-
perties, the effect of a hammer blow on a small sample of
model viscoelastic material is considered. In this situation,
the duration of the experiment is long compared with the
time required for stress equilibrium to develop and short in
comparison with the thermal relaxation time of the sample.

The analysis shows how a material which responds in an almost
perfectly elastic manner to a light blow can respond in a
viscous manner to a heavy blow. It also suggests that a
homogeneous continuum with properties that would make it
acceptable as a structural material must be brittle. This
result may contribute to the understanding of the important
relationship between microstructure and ductility.

The hammer experiment involves relatively high strain
rates which vary continuously during the deformation. In
earlier work, the constant deformation rate case was studied.
The latter situation is difficult to produce in the laboratory
in the range of rates of interest here and is less likely to

arise in practice.




RESPONSES OF MODEL VISCOELASTIC MATERIALS TO IMPACT

Introduction

This report is one of a series describing exploratory
studies of the mechanical behavior of materials which have
temperature dependent properties. With such materials, the
heat produced by the irreversible part of the work of deform-
ation can have a strong influence on the outcome of an exper-
iment (1-8). The present study relates to the effect of
impact loads on viscoelastic materials. As before, the
approach that is taken involves the examination of the res-
ponses of selected models of materials to simple test situations.
The relevance of the models is then estimated by comparing these
responses with features of the behavior of real materials for
which physical rationalizations are being sought. The results
supplement Qhe earlier studies and are a further step in the
development of an understanding of the effects of energy conser-
vation on the behavior of materials.

The problem that is considered here is similar to that
which arises when a short cylinder of material, standing on an
anvil, 1s hit with a hammer. Real experiments of this type are
easy to perform in the laboratory and they simulate a condition
which is of practical interest. These experiments 1involve

relatively high strain rates
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which vary continuously during the process. The present study

is thus distinguished from one described earlier in which the
deformation of model viscous cylinders at various constant

rates was considered (6). That constant rate case, in the

range of interest here, is difficult to produce in the laboratory
and is less likely to occur in nature,

In the absence of thermal effects and changes of the shape
of the test piece, the solutions of this problem are familiar.
For example, with perfectly elastic materials the hammer will
bounce away from the sample with a velocity equal and opposite
to its initial velocity. With viscoelastic materials the bounce
velocity will be lower and there will be no bounce when the
conditions for critical damping are met.

With heating, the effective viscosity 1s reduced and the
damping increases during the experiment. As a consequence, the
amount of bounce will depend on the severity of the blow as well
as the properties of the material. In particular, it is shown
that a material which responds in a generally elastic manner to
a light blow that does not produce much heat may respond inelas-
tically to a heavy blow. This is, of course, precisely what is
observed with real maferials. The model material can also show
a strain rate dependent yield strength similar to that observed
in real experiments. Under some condltions very high tempera-
ftures are produced in the model material which might lead to
catastrophic fallures comparable with brittle fracture in real

materials.
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Discussion of the Model Experiment

The model experiment which is considered has the following
features. The duration of the experiment is long in comparison
with the time required for stress equilibrium to develop 1n the
system and short in comparison with the thermal relaxation time
of the test piece. In other words, the deformation is treated
as quasi-static and adiabatic. These conditions are quite
appropriate in many real hammer experiments.

The instantaneous deformation is considered to be divided
into two independent parts. One is reversible and proportional
to the current value of the force. The other is irreversible
and depends on the time integral of the force. In other words
the system is treated as a Maxwell Model composed of an ideal
elastic element in series with an ideal viscous element. This
also implies that the model material is homogeneous and iso-
tropic which is not generally true of real materials. The
results suggest an important role for heterogeneity in determin-
ing the behavior of real materials.

The temperature effect is considered to arise from the work
done on the viscous element. On the basis of the contemporary
view of the physics of materials, it may be expected that the
temperature dependence of the viscosity is very much stronger
than the temperature dependence of the elasticity. For these

computations the latter is neglected. The pressure dependence
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of the viscosity is also neglected. Similar idealizations were
made 1n the earlier studles which gave results in general agree-
ment with experience.

The changing shape of the ftest piece is also considered,
subject to the assumption of constant volume, In compression
experiments, the increase in cross-~sectional area tends to off-
set the force reduction caused by heating. In tension experi-
ments the change in section area augments the effect of heating.
In practice, when the sample becomes very short or very long,
heat losses to the environment can be expected so that the
adlabatic assumption loses its validity. Also, in real tensile
experiments, non-uniform strain distribution are likely to

arise,

Detalls of the Computation

The instantaneous velocity of the hammer after impact is

the sum of the rate of displacement of the elastic elementth

and that of the viscous element(?v.

.::_‘- - 1

< €.t e, (1)
The force producing the deceleration of the hammer is the

restoring force of the strained elastic element which is equal

to the force on the deforming viscous element.

t.
_,__[v‘é = El( é—Edt = Hé\/ (2)

in which M is the mass of the hammer, E is the effective spring
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constant and H is the effective viscosity.

The substitutions
w = e/éo
T - T8y t

— —
£ W
~— ~—

in which éo is the hammer velocity at 1impact and t is time}

define the non-dimensional velocities

Py Aw
LJE': &, - - Az
(5)
é (= oA
WDy s 7 = T g Az (6)

so that equation 1 becomes

2 W -
AL L A2 0w = (7)

Q- "VusE (8)

For small deformations @ is essentially a constant, Q4 ,

in which

and equation (7) leads to the linear damped oscillations refer-
red to in the introductory remarks. As would be expected the
value of Q5 1s an important property of the system. It is
similar to the quantity /7 cited in reference g and its designa-
tion is intended to suggest the quality factor used by electrical
engineers in the discussion of the behavior of circuits and com-
ponents. The value of Qp determines the damping in the system.
When Q5 1is high, bounce will occur, when it is low,there will be
no bounce. Furthermore, for systems that bounce, the value of
1/Qo indicates the fraction of the total energy that is lost per

bounce,
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In general, however, Q is not constant. The effective

viscosity, for example, can be factored to give

W= T4/, (9)
in whickly, A, and LV are respectively the coefficient of
viscosity, cross-sectional area and length of the viscous ele-
ment, which vary in the course of the deformation.

Having in mind a hammer made of an elastic material and
much larger than the test plece, the elastic deformation of the
sample will be negligible in comparison with that of the hammer.
Changes of the effectlve spring constant and mass in the exper-
iment are, therefore, neglected.

Equation 9 can also be written

He e R (0

in which the zero subscripts refer to the initial values of the

parameters. Assuming incompressibility this becomes
Z
S H, (ke )T (11)
f - © Ly 7]0
The current length of the sample is then given by
t
Lo Lox (& dE (12)
v e o
which leads to )

Eo A u
[ - %:{ = | x M/E T §§W+ dz‘)dz(l_%)
0 0

The sign option allows the computation to be applied to both
compression and elongation of the sample.
The viscosity ratio in equations 10 and 11 is now assumed

to depend only on the temperature, T, according to




_alr7) -
T T e “Wrn) 7 (14)

in which "a" is a constant of the material and gfis defined
by equation 14, The current temperature is determined by the
time integral of the power input to the viscous element divided

by its heat capacity so that

+ Z
g = - ﬁ_& C:ﬁ é - - Q,/Vé
¢ focﬁoLo VM | CAoL, ("") ;“/C (15)

in which ¢ is the specific heat of the material.

Equation 7 can now be rewritten

2“') i v / ‘/{) L&U w
F Rl W* )6/67“/“ WAl L) G g
(1¢)

in which
- aloE (17)
| (18)

L

and the negative sign in front of pg indicates that the impact
compresses The sample and the positive sign indicates that the
impact stretches the sample. Equations 7 and 16 describe
experiments in which the hammer sticks to the sample. If, when
dbd/dt, changes sign the hammer separates from the sample, the

solution 1s complete when this sign change occurs.

Results of Computation

The responses of nine different representative model

materials are shown in Figures 1-12. A range of initial hammer

=0
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velocities is applied to each material and both compression
and tension are considered. The experiments are character-

ized by the values of the non-dimensional groups defined by

e T m $
d Vo. The first of these, Qy, completely charact-

erizes the small deformation, isothermal response of the

model material which is linearly related to the initial hammer
velocity. When Qo is large, the response 1s generally elastic.
When Qo is small, it is generally viscous. Critical damping
occurs for QO= 0.5.

The group, éﬂ, contains the temperature coefficient of
the viscosity and the heat capacity of the sample. This
quantity ftogether with fthe reduced, initial hammer velocity,
Vo, determine the magnitude of the thermal effect. The value
of & can be qualitatively correlated with the nature of a real
material on the atomic scale through the energy of activation
for the deformation process.

The significance of these groups is further indicated by
the fact that the adiabatic temperature developed 1in the test
pilece when all of the kinetic energy of the hammer is converted
to heat 1s given by

2
= (19)

This is the actual temperature when the damping is supercriti-

Posse

cal and no bounce occurs. For high Qg systems the actual
temperature generated by the blow before the hammer bounces
depends on the new group

b4
K= %{‘ (20)
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The results are presented just as theyare plotted by
the computer and are discussed as if they were real experi-
mental results. The figures shawthe history of the reduced
temperaturesj<¢ s the reduced forces, d“34ﬂz (which are
proportional to the deformation of the elastic element) and
the reduced lengths of the viscous element (which in this
case corresponds to the sample,Jf: LV/LO) in terms of the
reduced time, € . The curves are dotted after the force
changes sign. The dotted portions would apply if the hammer
adhered to the sample after impact. They sometimes indicate
the residual kinetic energy in the bounce.

The responses are quite diverse. Figures 1-3 show the
behavior of a fairly elastic material (Q5=10) in compression.
In Figure 1, the heating effect is the lowest (cf-= 2.0) the
range of B is 0.05 to 0.450, and the range of %max is 0.5-4.5.
Gross non-linearity appears only in the dotted portion of the
curves; that is, after the bounce. Notice how at the highest
velocity the bouncing hammer might stretch the heated sample
if it adhered.

Figure 2 shows the results whenéﬁ= 10 the range of B is
0.01-1.0, and the range of ¢%mm:is 0.1-10., The most signifi-
cant feature of this figure and also of Figure 3, for which
§7='20 is the abrupt onset of the effect of the heat. That

is, at the highest hammer velocity the temperature is a small
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fraction of ¢'max'until the damping builds up to the critical
value. It then rises rapidly to the full value. In Figure 3,

the range of values of B is 0.02-0.50 and the range of ¢ max

is 0.2 to 5.0,

Figures 4-6 show the behavior in compression of a material
which has more initial damping <Q6=1’O)‘ Figure 4, for which
{'—‘ 2 shows the responses in the range B =0.,02-2.0 and ¢max
0.02-2.0. This material shows a more gradual onset of damp-
ing because of the lower value of Q,, Figure 5, for f='10,

B=0,1-10 and ¢max_ 0.1-10, shows a new effect. At the high-
est hammer velocity, the sample collapses before the kinetic
energy of the hammer is spent. As a result of the geometric
effect the force rises again. In effect the hammer bounces
off the anvil after using some of i1ts energy to produce the
deformation. Figure 5, for & = 20, B=0.2-20 and ¢max: 0.2-20.
shows generally similar behavior.

Figures 7-9 show the behavior, in compression, of a mate-
rial for which the initial damping is supercritical (Qz 0.1).
Here the value of B 1s irrelevant and only?‘maX must be con-
sidered. 1In Figure 7 the range of ¢max is 0.02 to 4.5,
Oscillations are shown in the figures at the higher initial
velocities which are due to the bounce of the hammer after the

sample 1s flattened. Stretching of the sample, if it remains

attached to the hammer is conspicuous in this figure.
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Figures 8 and 9, similarly, show no oscillations at the
lowest hammer velocities and saturation or bottoming at the
higher velocities.

Figures 10-12 are derived from ftensile experiments, 1In
these the bottoming does not occur. Hcwever, the question of
whether the flight of the hammer i1s arrested by the impact
arises. Filgure 10 shows the response of the generally elastic
sample (Qislo). The abrupt yield of this material appears
here as 1in the compression experiment, The hammer is arrested
at each velocity but 1t almost gets away at the highest velo-
city. Flgure 11 shows the response of the material with Qgrlq‘
Here a damped oscillation is shown at the lowest velocity. At
the highest velocity the hammer does not stop. Figure 12 shows
almost typical viscous behavior (Q5=.1). It appears that the

hammer is arrested at the lower velocity.

Discussion of Results

In the problem considered above the force and deformation
programs are determined by the properties of the material and
certalin features of the test situation. This is iIn contrast
to the earlier studies in which these programs were inputs,

The discussion here is, therefore, somewhat more complicated.
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In any case, 1t 1s desirable to establish criteria for the
" significance of heating effects in any particular experiment,
The numbers B and d)max are appropriate.

The results conform generally with experience with fairly
;oft'materials and with some types of harder matcrials which
are brittle. The application of the first law of thefmo—
dynamics provides an explanation for certain mechanical
responses which is certainly incomplete. However, whatever
additional rationalization is applied would be enriched by
these energy considerations.

One of the somewhat unexpected consequences of this study
is that it suggests that any homogeneous, viscoelastic material
which has properties which would make it acceptable for struc-
tural applications would necessarily be brittle., This follows
from the abrupt development of criticality in the damped sys-
tem even when the effective viscosity changes slowly. It
would follow then that the ductility of such materials must
depend on their heterogeneity or microstructure. This infer-
ence is in agreement with some of the prevailing views of
students of material behavior. A mechanism for this effect
was proposed in an earlier report (5).

It may be noticed that if a purely viscous ﬁodel were hit
by the hammer, the initial value of the force would be infinite.
-It would, however, rapidly decay to essentially the same form

as shown in the low Q cases described above. In any real system
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some elasticity will exist and the force will be zero at the

instant of impact.
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Figure 1 -
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CAPTIONS FOR FIGURES

Reduced temperature, reduced force and reduced length
for a system characterized by Qo=10.0 and & = 2.0 are
plotted as a function of reduced time. Solution

curves for values of reduced initial compressive ham-

mer velocity, Vo=0.5, 1.0, and 1.5 are superimposed.

4

Figures 2 -through ;? are the same as Figure 1 except for differ-

Figure 2 -
Figure 3 -
Figure 4 -
Figure 5 -
Figure 6 -
Figure 7 -
Figure 8 -
Figure 9 -
Figure 10 -
Figure 11-

ences as noted below.

Qo= 10.0,§=10.0 Vo=0.1, 0.5, 1.0
Qo= 10.0 §'= 20.0 Vo ~ 0.1, 0.5, 0.6
Qo= 1.0 §= 2.0 Vo = 0.1, 0.5, 1.0
Qo=1.0,§+ 10.0 V,: 0.1, 0.5, 1.0
QO=1.O/§-’ 20.0 Vo= 0.1, 0.5, 1.0
Qo= 0.1, §= 2.0 Vo= 0.1, 0.5, 1.5
Qo = 0.1 §+ 10.0 Vo= 0.1, 0.5, 1.0
Qo = 0.1, £~ 20.0 Vo, =0.1, 0.5, 1.0

Reduced temperature, reduced force and reduced length
for a system characterized by Q = 10.0 and .&=/.0 are
plotted as a function of reduced time. Solution

curves for values of reduced initial eslongative ham-

mer velocity, Va= 0.1, 0.6, 0.7 are superimposed.

Q= 1.0, ¥72.0

(Same as Figure 10 except Vo= 0.1, 0.5, 1.0)
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Figure 12 - Qo =0.1 §=20.0

(Same as Figure 10)

(Vo

0.05,

0.5 are




1 - \ B | B
| \ |
e / — -
! | - [T ) -
! | by _,
_ _ ly L \ —
1 1 — w 17 A
| | o ~ f M.'__
b 7 T
) \ _ B i B ~ < B
— \ __ /_ " — /
" \ | - // - .0 /_ -
o 1 \
> R R N =T A L
; (AN \
" I ~ R \ /_
| - 0 A\ N \ | .
“ f/ “ VO\‘.I//_- /, A
X ,, | \\ __/
1
. - -
o anand p—
1 17 U1 7 l | | |
n H MmN = o - o ~ o — o

i 1
TINLVHIdINIL aaDNaiyd AOHOI QMODQMM HIDNIT dI0oNaay

2.0

10

Compression

REDUCED TIME

Figure One,




REDUCED TEMPERATURE

REDUCED FORCE

REDUCED LENGTH

10

w

DD W ke o O A o

e ———— 0.5
’-—_
7
0.1
T I | L 1 | | | |
v = 1.0 PR
7 ~
AN 0.5 /// N //
S L~ 40 1 S -
T I i ] | | 1 |
v = 0.1
o
-— __,—g’: :_‘_\,.___... —_——— = - = -
0.5
———————————— 1.0
1 { 1 1 | I | 1T 1 { |
5 10
REDUCED TIME
Q= 10,0

Figure Two. Compression $=10.0



0.6

s e e e s S e e ]

—_————— 0.5

/’

0.1

o 0]

|

- ©

JINIVHAdINI L dIDNAIAH

T

[Te]

H M

|

N

I

r{

o

d0HO0d @ddNaId

= 0.5
0.1

v
o

—
//

-

—

[a\] -

HIODNIT dadNadad

10

Q=10.0

REDUCED TIME

§=20.0

Compression

Figure Three.




REDUCED TEMPERATURE

REDUCED FORCE

REDUCED LENGTH

’__"_'-'-'-——
-1 — T T T T T T 1T 71
v = 0.1

l o o0
——————————— 0.5

//—_-‘\h-

- 1.0

0 —

-1 1 T | T | T T T I 1
0 5 10
REDUCED TIME o 1o

Figure Four,

Compression §= 2.0



0.5

- = ww e = - e —
j
-l T S ol — -
i
- e — e —— — ——— ——

-———=--1.0

Y 0
—

Q=1,0
8§=10.0

REDUCED TIME
Compression

Figure Five.

I Ll I | I 1 {
—

7o) h ™ o] o _.u i =) 1_. — =

FYNIVHAdNIL IONATY AOYO0d AIONATY HIONIT QI0Nady




1.0
0.1

- —

1 ] ! 1 | !

© [Te} AN ¢} oy —

JHNLVHIdNIL daoNaayd

7 o=

1
|
o

HLONIT dIdNaiyg

I0dO0d aIdNaay

10

Q=10

REDUCED TIME
Figure Six. Compression

§=20.0




0.1

- - ——
o

U I I

N D B

n < 3] (3] 4 o

TINLVHIdINIL aadNaiayd

N\
b
[
\\
4 7 -
) 34

\\_ B

)\

//

NN e

—  N| N

0904 aadNaiy

HIDNIAT daDNady

15

10

REDUCED TIME

Q=10.1

2,0

8=

Compression

Figure Seven.




0.1

1.0
—e== 0.5

" \

JINLVIIdINAL aiadNaay

~ [e=] —t
1

clor(oX 1 QMODQ.H,E

1

HIODNAT aIdDNAdayg

15

10

REDUCED TIME

Figure Eight.

N

Compression



REDUCED TEMPERATURE

REDUCED LENGTH

REDUCED FORCE

—— ‘—.'/ e —————
=10 [
p— Vo ,’
/
-—
= 0.5
L 0.1 -
rrrrrrrrrrr1rrrr7rrrror0 17 17 i 11 hbPiri1 i
v = 1.0
/0.5
0.1/.._\
—— 4—‘ L . e ———— — — {— — -
\ N7
\\\I
\\/
\.
rrirrrrrirrrererrrrrierrrrrrryirrni
rrrrrrvr/vr+rivrvi1rr1rr1r1yrov1001vr1r1i 1 v rv b1 11
0 5 10 15
REDUCED TIME Q=0.1
Figure Nine. Compression §= 20.0




0.1

eem=m == ===10.6

- e — - " > - - ——
-

/ -

r 17T 1T 1T 1
N H M N O+ o

]
JINLVHIdNIL aaonaday

J0HOod aIdNaIy

—
-~
- -
—
-~ -

0.6
T

1

~
— N = - -

| I
N — (=

HIONAT AZ0oNady

10

REDUCED TIME

Q=10,0
§=10.0

Elohgation

Figure Ten.



REDUCED FORCE

REDUCED TEMPERATURE

REDUCED LENGTH

T T T T T T T T T T 11
0 5 10
S MTT T T T T T T T T 11
0 5 10

5 7

Figure Eleven.

REDUCED TIME

Elongation



l

0.05
Pl

v = 0.5
| BRI

]

rFr 1T 1

432101_.

TYNIVIAdINAL CIONATY

LB

IDYOA aADNATH

HIONAT QZoNaad

10

REDUCED TIME

0.1
&= 20.0

Elongation

Figure Twelve,




